MySQL进阶
01、MySQL进阶:剖析MySQL索引底层数据结构
02、MySQL进阶:MySQL不同存储引擎下索引的实现
03、MySQL进阶:Explain深度剖析
04、MySQL进阶:践行索引优化
05、MySQL进阶:锁等待及死锁初探
06、MySQL进阶:无索引行锁升级为表锁
07、MySQL进阶:共享锁和排它锁初探
08、MySQL进阶:索引优化案例实操
09、MySQL进阶:索引下推IndexConditionPushdown初探
10、MySQL进阶:使用trace工具来窥探MySQL是如何选择执行计划的
11、MySQL进阶:orderby和groupby优化初探
12、MySQL进阶:分页查询优化的两个案例解析
13、MySQL进阶:Join关联查询优化
14、MySQL进阶:In和Exists的优化案例讲解
15、MySQL进阶:存储引擎初探
16、MySQL进阶:体系结构初探
17、MySQL进阶:解读MySQL事务与锁机制
18、MySQL进阶:多版本控制MVCC机制初探
19、MySQL进阶:并发事务问题及解决方案
20、MySQL进阶:锁机制初探
21、MySQL进阶:高效的设计MySQL库表
22、MySQL进阶:库表设计之IP和TIMESTAMP的处理
23、MySQL进阶:orderby出现usingfilesort根因分析及优化
24、MySQL进阶:canal实现mysql数据同步到redis|实现自定义canal客户端
本文档使用 MrDoc 发布
-
+
首页
11、MySQL进阶:orderby和groupby优化初探
 ### **DB Version** ```python mysql> select version(); +-----------+ | version() | +-----------+ | 5.7.28 | +-----------+ 1 row in set mysql> ``` ### **Table** ```python CREATE TABLE employees ( id int(11) NOT NULL AUTO_INCREMENT, name varchar(24) NOT NULL DEFAULT '' COMMENT '姓名', age int(11) NOT NULL DEFAULT '0' COMMENT '年龄', position varchar(20) NOT NULL DEFAULT '' COMMENT '职位', hire_time timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '入职时间', PRIMARY KEY (id), KEY idx_name_age_position (name,age,position) USING BTREE ) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COMMENT='员工记录表'; ``` 两个索引 1、 主键索引; 2、 二级索引 KEYidx_name_age_position (`name`,`age`,`position`) USINGBTREE; 重点就是这个二级索引 ,记好了哈。 ------------ **数据量** ```python mysql> select count(1) from employees ; +----------+ | count(1) | +----------+ | 100002 | +----------+ 1 row in set mysql> ``` ------------ ### **案例一 :explain select * from employees where name = ‘LiLei’ and position = ‘dev’ order by age** ```python explain select * from employees where name = 'LiLei' and position = 'dev' order by age ; ``` 先想一下这个order by 会不会走索引 ?  会走索引 原因呢? 脑海中要有这个联合索引在MySQL底层的B+Tree的数据结构 , 索引 排好序的数据结构。  name = ‘LiLei’ and position = ‘dev’ order by age **name 为 LiLei , name 确定的情况下, age 肯定是有序的 ,age 有序不能保证position 有序** **所以这个order by age 是可以走索引的** 继续分析下这个explain ```python mysql> explain select * from employees where name = 'LiLei' and position = 'dev' order by age ; +----+-------------+-----------+------------+------+-----------------------+-----------------------+---------+-------+------+----------+-----------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-----------+------------+------+-----------------------+-----------------------+---------+-------+------+----------+-----------------------+ | 1 | SIMPLE | employees | NULL | ref | idx_name_age_position | idx_name_age_position | 74 | const | 1 | 10 | Using index condition | +----+-------------+-----------+------------+------+-----------------------+-----------------------+---------+-------+------+----------+-----------------------+ 1 row in set ``` order by 走的索引 是不会体现在key_len上的, 这个74 = 3 * 24 + 2 , 是计算的name 。 最左匹配原则 ,中间字段不能断,因此查询用到了name索引。 但是Extra直接里面可以看出来 Using index condition ,说明age索引列用在了排序过程中 。 如果没有走索引的话,那就是 Using FileSort 了 接下来继续看几个例子,加深理解,重点是脑海中的 索引B+Tree结构 ------------ ### **案例二: explain select * from employees where name = ‘LiLei’ order by position** ```python mysql> explain select * from employees where name = 'LiLei' order by position ; ``` 想一想,这个order by 会走索引吗? 我们来看下索引 KEY idx_name_age_position (`name`,`age`,`position`) USING BTREE 再来看下查询SQL ```python where name = 'LiLei' order by position ; ``` name = LiLei , name 值能确定下来, 符合最左匹配原则 所以查询会走索引 , 用了联合索引中的name字段, key len = 74 . 所以 Using index condition order by position , 在索引中 中间缺失了age , 用position ,跳过了age , 那索引树能是有序的吗? 肯定不是。。。所以 position肯定不是排好序的 , 无法走索引排序,因此 Extra信息 有 Using filesort 来看下执行计划 ```python mysql> explain select * from employees where name = 'LiLei' order by position ; +----+-------------+-----------+------------+------+-----------------------+-----------------------+---------+-------+------+----------+---------------------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-----------+------------+------+-----------------------+-----------------------+---------+-------+------+----------+---------------------------------------+ | 1 | SIMPLE | employees | NULL | ref | idx_name_age_position | idx_name_age_position | 74 | const | 1 | 100 | Using index condition; Using filesort | +----+-------------+-----------+------------+------+-----------------------+-----------------------+---------+-------+------+----------+---------------------------------------+ 1 row in set mysql> ``` 正如分析~ 有感觉了吗? 再来看一个 ------------ ### **案例三:explain select * from employees where name = ‘LiLei’ order by age , position** 这个SQL和案例二的很相似 , 仅仅在排序的时候在前面多了一个age字段参与排序 , 那分析分析 order by 会走索引吗 ```python mysql> explain select * from employees where name = 'LiLei' order by age , position ; ``` 时刻不要那个索引树 ,来分析一下 name = LiLei , name 固定,结合 建立的索引, 最左原则,所以查询肯定会走联合索引中的部分索引 name . 在name都是LiLei 的情况下 , order by age , position 结合索引树 ,age和position用于排序 也是有序的,应该不会走using filesort 我们来看下执行计划  ```python mysql> explain select * from employees where name = 'LiLei' order by age , position ; +----+-------------+-----------+------------+------+-----------------------+-----------------------+---------+-------+------+----------+-----------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-----------+------------+------+-----------------------+-----------------------+---------+-------+------+----------+-----------------------+ | 1 | SIMPLE | employees | NULL | ref | idx_name_age_position | idx_name_age_position | 74 | const | 1 | 100 | Using index condition | +----+-------------+-----------+------------+------+-----------------------+-----------------------+---------+-------+------+----------+-----------------------+ 1 row in set mysql> ``` ------------ ### **案例四:explain select * from employees where name = ‘LiLei’ order by position , age** 再分析一个,和案例上也很像。 把 order by的排序顺序 调整一下,我们来分析一下 order by会不会走索引 ```python explain select * from employees where name = 'LiLei' order by position , age ; ```  ```python mysql> explain select * from employees where name = 'LiLei' order by position , age ; +----+-------------+-----------+------------+------+-----------------------+-----------------------+---------+-------+------+----------+---------------------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-----------+------------+------+-----------------------+-----------------------+---------+-------+------+----------+---------------------------------------+ | 1 | SIMPLE | employees | NULL | ref | idx_name_age_position | idx_name_age_position | 74 | const | 1 | 100 | Using index condition; Using filesort | +----+-------------+-----------+------------+------+-----------------------+-----------------------+---------+-------+------+----------+---------------------------------------+ 1 row in set mysql> ``` 咦,执行计划中有 using filesort 为什么呢? **看看我们二级索引的建立的字段顺序 , 创建顺序为name,age,position,但是排序的时候age和position颠倒位置了, 那排好序的特性肯定就无法满足了,那你让MySQL怎么走索引?** ------------ ### **案例五:explain select * from employees where name = ‘LiLei’ and age = 18 order by position , age ;** 这个order by 会走索引吗?  ```python mysql> explain select * from employees where name = 'LiLei' and age = 18 order by position , age ; +----+-------------+-----------+------------+------+-----------------------+-----------------------+---------+-------------+------+----------+-----------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-----------+------------+------+-----------------------+-----------------------+---------+-------------+------+----------+-----------------------+ | 1 | SIMPLE | employees | NULL | ref | idx_name_age_position | idx_name_age_position | 78 | const,const | 1 | 100 | Using index condition | +----+-------------+-----------+------------+------+-----------------------+-----------------------+---------+-------------+------+----------+-----------------------+ 1 row in set mysql> ``` **走了dx_name_age_position 索引中的 name 和 age , order by 其实也走了索引,你看extra中并没有 using filesort ,因为age为常量,在排序中被MySQL优化了,所以索引未颠倒,不会出现 Using filesort** ------------ ### **案例六:explain select * from employees where name = ‘LiLei’ order by age asc , position desc ;** ```python mysql> explain select * from employees where name = 'LiLei' order by age asc , position desc ; +----+-------------+-----------+------------+------+-----------------------+-----------------------+---------+-------+------+----------+---------------------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-----------+------------+------+-----------------------+-----------------------+---------+-------+------+----------+---------------------------------------+ | 1 | SIMPLE | employees | NULL | ref | idx_name_age_position | idx_name_age_position | 74 | const | 1 | 100 | Using index condition; Using filesort | +----+-------------+-----------+------------+------+-----------------------+-----------------------+---------+-------+------+----------+---------------------------------------+ 1 row in set ```  我们可以看到虽然排序的字段列与建立索引的顺序一样, order by默认升序排列,而SQL中的 position desc变成了降序排列,导致与索引的排序方式不同,从而产生Using filesort。 Note: Mysql8以上版本有降序索引可以支持该种查询方式。 ### **案例七:explain select * from employees where name in (‘HanMeiMei’ , ‘LiLei’) order by age , position ;** ```python mysql> explain select * from employees where name in ('HanMeiMei' , 'LiLei') order by age , position ; +----+-------------+-----------+------------+-------+-----------------------+-----------------------+---------+------+------+----------+---------------------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-----------+------------+-------+-----------------------+-----------------------+---------+------+------+----------+---------------------------------------+ | 1 | SIMPLE | employees | NULL | range | idx_name_age_position | idx_name_age_position | 74 | NULL | 2 | 100 | Using index condition; Using filesort | +----+-------------+-----------+------------+-------+-----------------------+-----------------------+---------+------+------+----------+---------------------------------------+ 1 row in set mysql> ``` 对order by 来讲 ,多个相等的条件也是 范围查询。 既然是范围查询, 可能对于每个值在索引中是有序的,但多个合并在一起,就不是有序的了,所以 using filesort ------------ ### **案例八: explain select * from employees where name > ‘HanMeiMei’ order by name ;** ```python mysql> explain select * from employees where name > 'HanMeiMei' order by name ; +----+-------------+-----------+------------+------+-----------------------+------+---------+------+-------+----------+-----------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-----------+------------+------+-----------------------+------+---------+------+-------+----------+-----------------------------+ | 1 | SIMPLE | employees | NULL | ALL | idx_name_age_position | NULL | NULL | NULL | 96845 | 50 | Using where; Using filesort | +----+-------------+-----------+------------+------+-----------------------+------+---------+------+-------+----------+-----------------------------+ 1 row in set mysql> ``` MySQL自己内部有一套优化机制,且数据量不同、版本不一样,结果也可能有差异 **一般情况下, 联合索引第一个字段用范围不一定会走索引 , 可以采用 覆盖索引进行优化,避免回表带来的性能开销 。** ```python mysql> explain select name from employees where name > 'a' order by name ; +----+-------------+-----------+------------+-------+-----------------------+-----------------------+---------+------+-------+----------+--------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-----------+------------+-------+-----------------------+-----------------------+---------+------+-------+----------+--------------------------+ | 1 | SIMPLE | employees | NULL | range | idx_name_age_position | idx_name_age_position | 74 | NULL | 48422 | 100 | Using where; Using index | +----+-------------+-----------+------------+-------+-----------------------+-----------------------+---------+------+-------+----------+--------------------------+ 1 row in set mysql> ```  ------------ ### **group by 优化** - group by与order by类似,其实质是**先排序后分组,遵照索引创建顺序的最左前缀法则。** - 对于group by的优化**如果不需要排序的可以加上order by null禁止排序。** - where高于having,能写在where中的限定条件就不要去having限定了。 ------------ ### **小结** - MySQL支持两种方式的排序filesort和index,Using index是指MySQL扫描索引本身完成排序 - order by满足两种情况会使用Using index A: order by语句使用索引最左前列。 B: 使用where子句与order by子句条件列组合满足索引最左前列 - 尽量在索引列上完成排序,遵循索引建立(索引创建的顺序)时的最左前缀法则 - 如果order by的条件不在索引列上,就会产生Using filesort - 能用覆盖索引尽量用覆盖索引
李智
2025年3月17日 13:32
转发文档
收藏文档
上一篇
下一篇
手机扫码
复制链接
手机扫一扫转发分享
复制链接
Markdown文件
分享
链接
类型
密码
更新密码